A New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm

Authors

  • Sakineh Asghari Agcheh Dizaj Department of Computer Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran
Abstract:

Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms to solve this complicated and sensitive issue. In this paper, we propose a new method by improving Genetic Algorithm (GA) with Bat Algorithm (BA), considering the effect of qualitative factors and false variables in the relations concerning the total estimation of the cost. The proposed method was investigated and assessed on four various datasets based on seven criteria. The experimental results indicate that the proposed method mainly improves accuracy in the SCE and it reduced errors' value in comparison with other models. In the results obtained, Mean Magnitude of Relative Error (MMRE) on NASA60, NASA63, NASA93, and KEMERER is 17.91, 34.80, 41.97, and 95.86, respectively. In addition, the experimental results on datasets show that the proposed method significantly outperforms GA and BA and also many other recent SCE methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

full text

Software Implementation and Experimentation with a New Genetic Algorithm for Layout Design

This paper discusses the development of a new GA for layout design. The GA was already designed and reported. However the implementation used in the earlier work was rudimentary and cumbersome, having no suitable Graphical User Interface, GUI. This paper discusses the intricacies of the algorithm and the GA operators used in previous work. It also reports on implementation of a new GA operator ...

full text

A New Method for Color Gamut Mapping by Genetic Algorithm

To reproduce an image, it is necessary to map out of gamut colors of the image to destination gamut. It is clear that the best color gamut mapping introduces the perceptually closest image to the original one. In this study, a new color gamut mapping is purposed by the aid of Genetic Algorithm (GA). The color difference between the original and mapped images based on S-LAB formula was chosen as...

full text

A three- stage algorithm for software cost and time estimation in fuzzy environment

In this paper an efficient three- stage algorithm is developed for software production cost and time estimation. First stage includes a hybrid model composed of COCOMO and Function Points methods to increase estimation accuracy. Second stage encompasses paired comparisons matrix of analytical hierarchy process to determine amount of any resources consumed in each step of software production by ...

full text

Genetic Algorithm for Optimizing Neural Network Based Software Cost Estimation

Software engineering cost models and estimation techniques are used for number of purposes. These include budgeting, tradeoff and risk analysis, project planning and control, software improvement and investment analysis. The proposed work uses neural network based estimation, which is essentially a machine learning approach, is one of the most popular techniques. In this paper the author has pr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  17- 30

publication date 2018-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023